metric of constant curvature

metric of constant curvature
Математика: метрика постоянной кривизны

Универсальный англо-русский словарь. . 2011.

Игры ⚽ Поможем сделать НИР

Смотреть что такое "metric of constant curvature" в других словарях:

  • Curvature of Riemannian manifolds — In mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension at least 3 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous… …   Wikipedia

  • Curvature — In mathematics, curvature refers to any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line, but this …   Wikipedia

  • Metric Structures for Riemannian and Non-Riemannian Spaces —   Author(s) Misha Gromov …   Wikipedia

  • Metric expansion of space — Physical cosmology Universe · Big Bang …   Wikipedia

  • Metric tensor (general relativity) — This article is about metrics in general relativity. For a discussion of metrics in general, see metric tensor. Metric tensor of spacetime in general relativity written as a matrix. In general relativity, the metric tensor (or simply, the metric) …   Wikipedia

  • Metric space — In mathematics, a metric space is a set where a notion of distance (called a metric) between elements of the set is defined. The metric space which most closely corresponds to our intuitive understanding of space is the 3 dimensional Euclidean… …   Wikipedia

  • Ricci curvature — In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci Curbastro, provides one way of measuring the degree to which the geometry determined by a given Riemannian metric might differ from that of ordinary Euclidean n… …   Wikipedia

  • Gaussian curvature — In differential geometry, the Gaussian curvature or Gauss curvature of a point on a surface is the product of the principal curvatures, κ 1 and κ 2, of the given point. It is an intrinsic measure of curvature, i.e., its value depends only on how… …   Wikipedia

  • Einstein's constant — or Einstein s gravitational constant, noted kappa; (kappa), is the coupling constant appearing in the Einstein field equation which can be written: G^{alpha gamma} = kappa , T^{alpha gamma} where Gα gamma; is the Einstein tensor and Tα gamma; is… …   Wikipedia

  • Scalar curvature — In Riemannian geometry, the scalar curvature (or Ricci scalar) is the simplest curvature invariant of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the intrinsic geometry of the… …   Wikipedia

  • Sectional curvature — In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature K(σp) depends on a two dimensional plane σp in the tangent space at p. It is the Gaussian curvature of… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»